Transformation of human osteoblasts to anchorage-independent growth by insoluble nickel particles.
نویسندگان
چکیده
Nickel compounds are well established by epidemiologic studies as human carcinogens. Although the carcinogenicity of nickel compounds has been studied in experimental animals and in a variety of cultured mammalian cells, there are only sporadic reports of nickel-induced transformation of human cells. In attempts to study the mechanisms of nickel-induced carcinogenesis in human cells, an immortalized human osteoblastic cell line (HOS) that could not grow in soft agar or form tumors in athymic nude mouse was repeatedly treated with a water-soluble nickel compound (NiCl2) or a less water-soluble nickel compound crystalline (NiS). After three rounds of NiS treatment, there was an increase in anchorage-independent (AI) colony formation. This was not found in untreated or NiCl2-treated cells. Ten AI colonies obtained from NiS-treated cells were isolated. All of these clones showed changes in cell morphology, including the appearance of uniform polygon shape, growth in multilayers, and heavy staining with Giemsa. Most of these clones were retested for their ability to grow in soft agar and showed growth efficiencies of 5 to 50%. It has been shown by other investigators that aggregate growth is well correlated with tumorigenic potential in viral or chemical transformants of HOS cells. Four of seven tested NiS-transformed clones were able to form large aggregates compared to their untransformed counterparts, and continued to proliferate in aggregate form when they were plated on 0.9% agar. Current investigations focus on the molecular and genetic changes induced by nickel compounds in these human cells.
منابع مشابه
Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects.
Heavy metal-tungsten alloys (HMTAs) are dense heavy metal composite materials used primarily in military applications. HMTAs are composed of a mixture of tungsten (91-93%), nickel (3-5%) and either cobalt (2-4%) or iron (2-4%) particles. Like the heavy metal depleted uranium (DU), the use of HMTAs in military munitions could result in their internalization in humans. Limited data exist, however...
متن کاملNickel-induced transformation of human cells causes loss of the phosphorylation of the retinoblastoma protein.
The retinoblastoma (Rb) protein (pRb) has been studied in various crystalline NiS-transformed cell clones derived from the human osteoblast cell line, HOS TE-85. The parental HOS cells were not able to proliferate in soft agar medium, but they acquired this property following treatment with crystalline NiS. The pRb was found only in the hypophosphorylated form in 8 of 9 nickel-transformed clone...
متن کاملMolecular biology of deregulated gene expression in transformed C3H/10T1/2 mouse embryo cell lines induced by specific insoluble carcinogenic nickel compounds.
In the past, exposure of workers to mixtures of soluble and insoluble nickel compounds by inhalation during nickel refining correlated with increased incidences of lung and nasal cancers. Insoluble nickel subsulfide and nickel oxide (NiO) are carcinogenic in animals by inhalation; soluble nickel sulfate is not. Particles of insoluble nickel compounds were phagocytized by C3H/10T1/2 mouse embryo...
متن کاملTransformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.
Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation bas...
متن کاملInduction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts.
We studied whether arsenic, nickel, and chromium compounds that are human carcinogens could induce transformation of cultured primary human diploid foreskin cells (HFC). All nickel compounds tested, PbCrO4, K2Cr2O7, CrO3, Na2HAsO4, NaAsO2, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused significant (p = 0.001) dose-dependent inductions of anchorage-independent colonies in HFC. KH2AsO4, C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 102 شماره
صفحات -
تاریخ انتشار 1994